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Abstract. We study congruences relating Fourier coefficients of meromorphic modular forms
and Frobenius eigenvalues of elliptic curves corresponding to their poles. We develop a p-adic

cohomological framework that interprets these congruences via the interaction between the rigid

cohomology of modular curves and the crystalline structure of the associated elliptic curves.
Using comparison theorems and the Gysin sequence, we relate the Frobenius actions in cohomol-

ogy to the Up-operator acting on spaces of overconvergent modular forms. Our approach applies

uniformly to both modular curves and Shimura curves admitting smooth integral models over
Zp.
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1. Introduction

In this work, we provide a p-adic cohomological interpretation of certain congruences between
Fourier coefficients of modular forms and Frobenius eigenvalues arising from the geometry of mod-
ular (and Shimura) curves, as studied in a recent work by Zhang [Zha25]. Zhang numerically
observed several congruences of the form

ap

(
E4

j − j(C)

)
≡ ap(C)2 mod p

where C/Q is an elliptic curve with good reduction at p and ap(C) = p+1−|C(Fp)|. To study these
relations, we introduce a cohomological framework and use the Gysin sequence to relate classes
attached to modular forms to differential forms attached to the elliptic curves corresponding to
the poles.

More precisely, let X be the elliptic or quaternionic modular curve of level N , defined over
Zp with (p,N) = 1. Consider ω the line bundle obtained from the universal object whose global
sections are modular forms. Let H be the vector bundle of rank 2 obtained from the relative
de Rham cohomology. To relate meromorphic modular forms with prescribed structure at the
poles, we use de Rham cohomology with coefficients and relate classes in H1

dR(X \ {α},H) with
fibers α∗H for α a Zp-point. Using comparison theorems between rigid and de Rham cohomology,
we relate meromorphic modular forms to overconvergent p-adic modular forms. In this way, we
can naturally study the Frobenius action on the various cohomology groups. Enlarging the set of
poles considered will allow us to study an explicit Frobenius action on the meromorphic modular
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forms representing the cohomology classes and to relate it with the action of the Up-operator.
Theorem A is the core result of this paper and shows that the Frobenius eigenvalues of the de
Rham cohomology at the poles are related to the Up action on meromorphic modular forms.

Theorem A. Let X be a modular curve (elliptic or quaternionic) of level N defined over Zp,
with N > 3, p > 3 and (N, p) = 1. Fix a Zp-point α on the modular curve. Let k be a positive
integer with p > k + 1, let P (X), Q(X) ∈ Qp[X] be respectively the characteristic polynomials of

the Frobenius action on Symk(α∗H)[1] and on H1
dR(X

rig,Hk)

P (X) = det(Frob−X|Symk(α∗H)[1]) =

k+1∑
i=0

ciX
i,

Q(X) = det(Frob−X|H1
dR(X

rig,Hk)),

P (X)Q(X) =

d+k+1∑
i=0

eiX
i

with d = dimQp
H1

dR(X
rig,Hk) = dimQp

Mk+2 + dimQp
Sk+2. Let M = d + k + 1, then for every

f ∈ M
mero,{α}
k+2 we have

M∑
i=0

eM−ip
M−iU i

p(f) ∈ θk+1
(
M

†,{α}
−k,λ

)
where θ is the differential operator q d

dq in the elliptic case and M
†,{α}
−k,λ is the space of λ-overconvergent

modular forms defined away from a small disk around α.

The integrality provided by crystalline cohomology then allows us to deduce congruence rela-
tions. In the elliptic setting, we can derive an explicit congruence at the level of q-expansions as
shown in Corollary 1.

Some technical constructions are only briefly outlined in this article, such as the construction
of the Up operator on the open curve and the extension of Coleman’s result 1 to Shimura curves.
A more detailed treatment and description will appear in the author’s PhD thesis.

1.1. An important note on a recent result. A recent preprint [ALS25] came out during the
writing of this article. The authors analyze the same congruences between meromorphic modular
forms and elliptic curves and give a proof of many of Zhang’s conjectures. Their methods extend
the classical work of Scholl [Sch85] and a more recent work by Kazalicki-Scholl [KS16] to the
case of meromorphic modular forms. The works are similar in many aspects, in particular the
initial cohomological setting and the Gysin sequence are used in fundamentally the same way.
Our approach differs from theirs primarily in the use of log-crystalline cohomology to identify a
Frobenius stable lattice and the use of an explicit Frobenius lift enlarging the set of poles to the
set of supersingular points. This allows us to avoid computing with local expansions at the cusp
at infinity, enlarge our framework to the Shimura setting and derive relations between Fourier
coefficients only at the very end. On the other hand, their precise work takes care of the order of
the poles of the meromorphic modular forms allowing them to obtain very sharp congruences on
the cohomological subgroup. In particular, they obtain a stronger result in the CM case.

After a very kind and fruitful exchange of emails with the authors, where they have looked at
a first draft of this work and at the techniques involved, they allowed us to publish our version.

1.2. Acknowledgments. The author would like to thank Jan Vonk for his invaluable supervision
and support, and for drawing his attention to many of the numerical congruences considered in
this paper. He also thanks Pengcheng Zhang and Tiago J. Fonseca for inspiring talks during their
visits to Leiden University.

2. Geometric setting

Let p > 3 be a prime, let N > 3 be an integer coprime to p. Consider one of the following
settings

• X = X1(N), the modular curve of level Γ1(N) defined over Zp classifying elliptic curves
with level structure,
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• X = XB a Shimura curve defined over Zp for B an indefinite non-split quaternion algebra
over Q of discriminant δ coprime with p and of level V1(N) classifying false elliptic curves
with level structure.

We will denote X = X × Fp its special fiber, let C ⊂ X(Zp) be the finite collection (possibly
empty) of cusps. Let ω be the ample line bundle over X obtained from the pushforward of the
differential bundle on the universal object. Let (H,∇) be the rank 2 vector bundle arising from
the relative de Rham cohomology over X with logarithmic connection

∇ : H → H⊗Zp Ω1
X(logC)

coming from the Gauss-Manin connection. In the quaternionic case we are fixing a choice of a non-
trivial idempotent element of M2(Zp) and projecting the four-dimensional vector bundle coming
from the relative de Rham cohomology to obtain Hk and analogously with ω. See [Kas04]. Denote

by Hk its k-th symmetric tensor power Hk = SymkH.
We recall the standard properties of Hk. The vector bundles ω and H fit in a short exact

sequence

(1) 0 → ω → H → ω−1 → 0

inducing a (k + 1)-step decreasing filtration on Hk

(2) Hk = Fil0Hk ⊇ Fil1Hk ⊇ · · ·FilkHk ⊇ Filk+1Hk = 0.

The graded pieces of the filtration are isomorphic to

GriHk = Filk−iHk/Fil
k+1−iHk

∼= ωk−2i.

The connection obeys Griffith’s transversality

∇Filk−iHk ⊆ Filk−i−1Hk ⊗OX
Ω1

X(logC)

and these maps induce a Kodaira-Spencer type of isomorphism of OX -modules for p > k + 1

(3) ∇ : GriHk
∼= Gri+1Hk ⊗X Ω1

X(logC).

Following the usual notation, we write

Mk(X) = Γ(X,ωk), Sk(X) = Γ(X,ωk−2 ⊗ Ω1
X).

We denote the complex arising from the connection by

H•
k :=

[
Hk → Hk ⊗OX

Ω1
X

]
and denote its hypercohomology groups by

Hi
dR(X,Hk) := Hi(X,H•

k).

Lemma 1. We have a short exact sequence

(4) 0 → ω−k
θk+1

−−−→ ωk+2 → Hk ⊗X Ω1
X(logC)/∇k(Hk) → 0

where the right map is compatible with inclusions and an Eichler-Shimura short exact sequence of
OK-modules

0 → Mk+2(X) → H1
dR(X,Hk) → Sk+2(X)∨ → 0.

Proof. Consider the filtration (FilpH•
k)p of the complex H•

k

FilpH•
k :=

[
FilpHk → Filp−1Hk ⊗OX

Ω1
X(logC)

]
.

and take the associated spectral sequence Ep,q
0 = FilpHp+q

k /Filp+1Hp+q
k . The only terms that

survive in page 1 are

E0,0
1

∼= Hk/Fil
1Hk, Ek+1,−k

1
∼= FilkHk ⊗X Ω1

X(logC).

The spectral sequence degenerates at page k+2 converging to Ek+1,−k
k+2 = H1(H•

k). This gives rise
to the short exact sequence

0 → Hk/Fil
1Hk

θk+1

−−−→ FilkHk ⊗X Ω1
X(logC) → Hk ⊗X Ω1

X(logC)/∇k(Hk) → 0.
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The second exact sequence is obtained applying the spectral sequence to the hypercohomology of
the graded pieces obtaining

0 → H0
dR(X,H•

k) → H0(X,ω−k) → H0(X,ωk ⊗X Ω1
X(logC)) → H1

dR(X,H•
k) →

→ H1(X,ω−k) → H1(X,ωk ⊗X Ω1
X(logC))) → · · ·

giving the desired exact sequence using ampleness of ω and Serre duality. □

Fix an effective divisor S =
∑n

i=1 αi supported on the open curve X \ C and defined over Zp,

αi : Spec(OK) → X \ C
for K a finite field extension over Qp with distinct close points on the special fiber X. We denote

by S their reduction to the special fiber X and SQp their restriction to the generic fiber. We have
that the curve U = XQp \ SQp is affine.

As a direct consequence of the lemma, the de Rham cohomology of Hk can be computed by

H1
dR(U,Hk) = Mmero,S

k+2 /θk+1(Mmero,S
−k )

where we have used the notation Mmero,S
k+2 = Γ(U, ωk+2) and should be thought of as meromorphic

modular forms with poles along S.

3. Rigid cohomological description

Consider Xrig to be the rigid analytification of X and the reduction map

red : Xrig → X(Fp)

where we fixed Fp algebraic closure of Fp. We then consider the wide open obtained from Xrig

removing closed balls in the residue disks of the points S. Since X is smooth, red−1(α) is conformal
to an open ball B for every α ∈ S. Fixing this parametrization and fixing 0 < λ < 1, define

Vλ = Xrig \
⋃
α∈S

B(α, λ)

with B(α, λ) closed ball inside red−1(α) centered in α. After an application of rigid GAGA to the
coherent sheaves, the acyclicity of wide open neighborhoods implies that the hypercohomology of
the complex H•

k can be computed simply by

H1
dR(Vλ,Hrig

k ) ∼= Γ(Vλ,Hrig
k ⊗ Ω1

Xrig (logC))/∇k(Γ(Vλ,Hrig
k ))

Borrowing once again the notation from the modular curve case, we will denote the sections of
ωrig over Vλ by

M†,S
k,λ = Γ(Vλ, (ω

rig)k)

and they should be thought as λ-overconvergent modular forms. We will denote it simply as M†
k,λ

when the set of poles is clear from the context.
We can apply the acyclicity property of Vλ to the short exact sequence of Lemma 1.

(5) M†
k+2,λ/θ

k+1(M†
−k,λ)

∼= Γ(Vλ,Hrig
k ⊗ Ω1

Xrig (logC))/∇k(Γ(Vλ,Hrig
k )) ∼= H1

dR(Vλ,Hrig
k ).

Since every vector bundle with connection on a smooth formal model X of Xrig is overconver-
gent, the work of Baldassarri-Chiarellotto [BC94] establishes a comparison isomorphism

H1
dR((XQp , SQp),Hk) ∼= H1

dR(Vλ,Hrig
k ).

The left-hand side in the previous isomorphism is the de Rham cohomology with logarithmic
coefficients. In characteristic 0, by an analytic result of Deligne [Del70] and later extended to an
algebraic version in [AKR09] we can relate it to the open curve case

H1
dR(XQp

\ SQp
,Hk) ∼= H1

dR((XQp
, SQp

),Hk) ∼= H1
dR(Vλ,Hrig

k ).

In particular, we have the following commutative diagram where all arrows are isomorphisms

(6)

Mmero,S
k+2 /θk+1(Mmero,S

−k,λ ) H1
dR(XQp \ SQp ,Hk)

M†
k+2,λ/θ

k+1(M†
−k,λ) H1

dR(Vλ,Hrig
k ).
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The natural inclusion Mmero,S
k+2 ↪→ M†,S

k+2,λ allow us to represent the cohomology classes in the rigid
setting by meromorphic modular poles along S.

In order to study and relate the Frobenius action on global sections and on the fibers we will
use the structure of overconvergent log F -isocrystal of (Hk,∇). Explicit Frobenius lifts have been
studied in the classical work of Katz [Kat73b] while the Shimura curve case has been studied by
Kassaei in [Kas04].

We apply the Frobenius equivariant residue sequence following Coleman [Col94] and Coleman-
Iovita [CI10].

(7) 0 → H1
dR(X

rig,Hrig
k ) → H1

dR(Vλ,Hrig
k )

Res−−→
⊕
α∈SK

H0
dR(Aα,λ,Hk)[1] → 0

Where Aα,λ are rigid subspaces of Vλ conformal to the open annuli res−1(α)\B(α, λ) and [1] refers
to the shift in the Frobenius action. The previous exact sequence gives in fact a rigid analogue of the
Gysin sequence. Since every residue disk admits a basis of horizontal section for an overconvergent
isocrystal as proved by Katz in [Kat73a], we can rewrite the exact sequence as

(8) 0 → H1
dR(X

rig,Hrig
k ) → H1

dR(Vλ,Hrig
k )

Res−−→
⊕

α∈SQp

Symk(α∗H)[1] → 0.

In particular we have that the cohomology groups have the following dimensions

• dimQp
H1

dR(X
rig,Hrig

k ) = dimQp
Mk+2(XQp

) + dimQp
Sk+2(XQp

) by Lemma 1,

• dimQp Sym
k(α∗H) = k + 1 for every α ∈ SQp ,

• dimQp H
1
dR(Vλ,Hrig

k ) = dimQp H
1
dR(X

rig,Hrig
k ) + |SQp |(k + 1).

In the elliptic setting we have

Symk(α∗H) ∼= Symk(H1
dR(Eα))

for Eα elliptic curve corresponding to the point α. In the quaternionic setting we have

Symk(α∗H) ∼= Symk(e1.H
1
dR(Aα))

for Aα abelian surface corresponding to the point α and e1 a fixed choice of idempotent in M2(Zp).

Remark 1 (Parallel transport of eigenbasis). The purpose of this remark is to explain how Frobe-
nius eigenbases behave when the poles are moved inside the same residue disk. The rigid Gysin
sequence (7) does not depend on the choice of poles as long as they are lifts of a set of point
modulo p. Consider S = {α1, . . . , αn} a set of smooth points on the modular curve X. Consider
S′ = {α′

1, . . . , α
′
n} a second set for which αi and α′

i lie in the same residue disk for i = 1, . . . , n.
Recall that the 0-th hypercohomology group is given by

H0
dR(Aα,λ,Hk) ∼= Γ(Aα,λ,H∇=0

k ).

Then we have the following commutative diagram

0 H1
dR(XQp ,Hk) H1

dR(XQp \ SQp ,Hk)
⊕

α∈S Symk(H1
dR(Eα))[1] 0

0 H1
dR(X

rig,Hrig
k ) H1

dR(Vλ,Hrig
k )

⊕
α∈S Γ(Aα,λ,H∇=0

k )[1] 0

0 H1
dR(XQp ,Hk) H1

dR(XQp \ S′
Qp

,Hk)
⊕

α′∈S′ Sym
k(H1

dR(Eα′))[1] 0

where the vertical maps are isomorphisms. Fixing a basis for one set of poles S, we can move the
basis to S′ using parallel transport computing an horizontal basis

χ(α, α′) : Symk(H1
dR(Eα)) → Symk(H1

dR(Eα′)).

For example, we could try to compute the eigenbasis on CM points and then move the basis to any
other point in the same residue disk.
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4. Integral Frobenius structure

We now consider the log-crystalline cohomology group H1
log−crys(((X,S)/Zp),Hk). Since Hk

has the structure of a logF -crystal as studied by Ogus [Ogu94], we obtain a Zp module with a
Frobenius action. By the classical work of Kato [Kat89] we have a comparison theorem with de
Rham cohomology

H1
log−crys(((X,S)/Zp),Hk)⊗Qp

∼= H1
dR((XQp

, SQp
),Hk)

and a comparison with rigid cohomology

H1
log−crys(((X,S)/Zp),Hk)⊗Qp

∼= H1
dR(Vλ,Hrig

k )

compatible with the action of Frobenius. We then find a Frobenius stable Zp-lattice Λ in the rigid
cohomology

Λ := Im(H1
log−crys((X,S)/Zp,Hk) → H1

log−crys((X,S)/Zp,Hk)⊗Zp
Qp

∼= H1
dR(Vλ,Hrig

k )).

By equation (5) we can see Λ contained in

Λ ↪→ M†
k+2,λ/θ

k+1(M†
−k,λ).

4.1. Explicit Frobenius lift. Consider now the classical case of S consisting of the set of super-
singular points and λ < 1/p + 1. As explained by [Kat73b] and [Kas04], there exist a section of
the projection map X(p) → X induced by the canonical subgroup. This morphism gives a lift of
Frobenius V on the modular curve X given by

(9) V : Vλ → Vλp

acting at the level of the moduli space sending the elliptic curve or abelian surface to the corre-
sponding quotient by the canonical subgroup. In the case of the elliptic modular curve, the V
operator acts on q-expansion by

(V f)(q1/N ) = pkf(qp/N ).

The morphism V is flat and we can then define a Up operator as the trace of Frobenius acting
on the de Rham cohomology H1

dR(Vλp ,Hk). Coleman proved the following theorem in the case of
the elliptic modular curve.

Theorem 1 ([Col96] Theorem 5.4). The space H1
dR(Vλ,Hrig

k ) is finite dimensional and the oper-
ators V and Up acting on the modular curve by correspondence induce endomorphisms Frob and

Ver of H1
dR(Vλ,Hrig

k ) such that

Frob ◦Ver = Ver ◦ Frob = pk+1.

As further explained, the action of Verschibung on the cohomology group H1
dR(Vλp ,Hrig

k ) is
given by

Ver : [f ] → [Upf ]

for f ∈ M†
k+2,λ under the isomorphism (5)

M†
k+2,λ/θ

k+1(M†
−k,λ)

∼= H1
dR(Vλ,Hrig

k ).

This relation extends formally from the results of Kassaei [Kas04] to the Shimura curve over Q. A
more detailed proof of this statement will appear in PhD thesis of the author.

Enlarging the set S and removing disks from the ordinary locus, we can restrict the action of
Frobenius and Up to a smaller domain. The key easy lemma for Frobenius neighborhoods is the
following

Lemma 2. Let B the residue disk of an ordinary point α defined over Fp, let t be a Serre-Tate
parameter. Then B ∼= Spf(Zp[[t]])η and the Frobenius lift V restricted to B is a strict contraction.

Fix α to be an ordinary Zp point on X and B ∼= Spf(Zp[[t]])η its residue disk, where we have
fixed the parametrization. Consider Vλ the rigid variety obtained as before by removing small
disks in the supersingular locus and V the Frobenius lift obtained from the canonical subgroup.
Then by the previous lemma,

V|B : B → B
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acts as a strict contraction. Removing a small ball of radius λ′ containing α and the canonical lift
of α, V acts on the annulus contained in B as

V : Aα,λ′ → Aα,λ′p .

This means that we can remove from Vλ a small ball in B and several annuli around on the
supersingular locus to obtain a wide open Vλ′ where the Frobenius lift V acts as in (9).

Combining the results of this section we obtain that there exists f1, . . . , fr ∈ M†
k+2,λ λ-overconvergent

modular forms with r = dimQp
H1

dR(Vλ,Hrig
k ) such that

Λ = ⟨[fi] : i = 1, . . . , r⟩Zp

on which the V operator acts as an endomorphism and for which we have the relation V ◦ Up =
Up ◦ V = pk+1. Under the chain of isomorphisms (6), we can pick f1, . . . , fr to be meromorphic
modular forms over Qp with poles along S.

Theorem A. Let X be a modular curve (elliptic or quaternionic) of level N defined over Zp, with
N > 3, p > 3 and (N, p) = 1. Fix α be a Zp point on the modular curve. Let k be a positive
integer with p > k + 1, let P (X), Q(X) ∈ Qp[X] be respectively the characteristic polynomial for

the Frobenius action on Symk(α∗H)[1] and on H1
dR(X

rig,Hrig
k )

P (X) = det(Frob−X|Symk(α∗H)[1]) =
k+1∑
i=0

ciX
i,

Q(X) = det(Frob−X|H1
dR(X

rig,Hk)) =

d∑
i=0

diX
i,

P (X)Q(X) =

d+k+1∑
i=0

eiX
i

with d = dimQp
Mk+2 + dimQp

Sk+2. Let M = d+ k + 1, then for every f ∈ M
mero,{α}
k+2 we have

M∑
i=0

eM−ip
M−iU i

p(f) ∈ θk+1
(
M

†,{α}
−k,λ

)
If we assume P (X), Q(X) coprime, then there exist f1, . . . , fk+1 ∈ M

mero,{α}
k+2 such that [fi] ∈ Λ

for i = 1, . . . , k + 1 and

k+1∑
i=0

cip
k+1−iU i

p(f) ∈ θk+1
(
M

†,{α}
−k,λ

)
for every f ∈ ⟨f1, . . . , fk+1⟩Zp

.

Proof. Consider the Gysin exact sequence (8)

0 → H1
dR(X

rig,Hrig
k ) → H1

dR(Vλ,Hrig
k )

Res−−→ Symk(α∗H)[1] → 0.

The assumption that the characteristic polynomials of Frobenius are coprime imply that the ex-
tension group of Qp-vector spaces with Frobenius action is zero and then the sequence split. In

general, the product of the characteristic polynomials of Frobenius annihilates H1
dR(Vλ,Hrig

k ). For

every class [f ] ∈ H1
dR(Vλ,Hrig

k ) with f ∈ M
mero,{α}
k+2 representative obtained under the chain of

isomorphisms (6) we then have

M∑
i=0

eiFrob
i([f ]) = 0.(10)

We can now use the trick of enlarging the set of removed points to allow an explicit lift of Frobenius.
Consider S = {α}∪SSp where SSp is the set of supersingular points on X. Consider the following
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commutative diagram obtained by functoriality (8)

0 H1
dR(X

rig,Hrig
k ) M†,S

k+2,λ/θ
k+1

(
M†,S

−k,λ

) ⊕
α∈SSp,Qp

SymkH1
dR(Eα)⊕ SymkH1

dR(α
∗E)[1] 0

0 H1
dR(X

rig,Hrig
k ) M

†,{α}
k+2,λ/θ

k+1
(
M

†,{α}
−k,λ

)
SymkH1

dR(α
∗E)[1] 0

=

By Theorem 1 we have that Frobenius and Verschiebung act on M†,S
k+2,λ/θ

k+1
(
M†,S

−k,λ

)
by V and

Up respectively. Composing (10) with VerM we obtain

M∑
i=0

ei(Ver
M ◦ Frobi)[f ] = 0,(11)

M∑
j=0

eM−jp
M−jU j

p (f) ∈ θk+1
(
M

†,{α}
−k,λ

)
.(12)

In the case where the exact sequence splits, we consider a basis of elements coming from Λ
and we obtain the previous relation with the characteristic polynomial P (X) = det(Frob −
X|Symk(α∗H)[1]). □

We conclude the section with two remarks. The first on a possible improvement using Hecke
operators, the latter on known results about the slope of p-newforms.

Remark 2 (Hecke operators). We could strengthen the previous theorem using the theory of Hecke
operators. The geometric correspondences inducing Hecke operators act on the cohomology groups.
By taking a linear combination T =

∑
λnTn, we can define an operator that annihilates the first

classical term in the Gysin sequence (8). In this way, the Frobenius submodule obtained from the

cohomology group H1
dR(Vλ,Hrig

k ) under the action of T becomes isomorphic to the piece coming
from the de Rham cohomology of the fibers.

Remark 3 (Slope of p-newforms). Consider once again the case of S consisting of all the super-
singular points of X. Then [Col96] in the case of elliptic modular curves identified the parabolic
part of H1

dR(Vp/p+1,Hk) with classical modular forms of level Γ1(N)∩Γ0(p) and weight k+2. This
has been later generalized in [Kas09] including the case of quaternionic modular forms. Theorem
1 allows us to relate the slopes of eigenvalues of the Frobenius with the slopes of eigenvalues of Up

operator. In the elliptic case we obtain that the Frobenius module⊕
α∈SQp

Symk(α∗H) ∼=
⊕

α∈SQp

SymkH1
dR(Eα)

is isoclinic of slope k
2 where Eα is the elliptic curve corresponding to the point α. From the exact

sequence (8) we deduce that the newspace of the classical modular forms of level Γ1(N) ∩ Γ0(p) is
isoclinic of slope k+2

2 due to the 1-shift and then slope k/2 due to the relation V ◦ Up = pk+1.

5. Arithmetic applications

5.1. Congruences on q-expansion. In this section, we restrict to the case where X = X1(N)
is an elliptic modular curve and we consider the expansion at the cusp [∞]. We summarize here
the classical geometric description of the q-expansion, referring to [Kat73b] for further details.
Consider the infinitesimal neighborhood Spf(Zp[[q

1/N ]]) of the cusp [∞] of the formal model X.
The fiber product with the universal elliptic curve gives rise to the Tate curve

Tate(q1/N ) E

Spf(Zp[[q
1/N ]]) X.ι

The global sections of the line bundle are given by

Γ(Spf(Zp[[q
1/N ]]), ι∗ω) = Zp[[q

1/N ]]ωcan
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where ωcan is the canonical differential dt/t on the Tate curve Gm/qZ. The global sections of the
sheaf of differential 1-forms on X with logarithmic poles at the cusps are given by

Γ(Spf(Zp[[q
1/N ]]), ι∗Ω1

X(logC)) = Zp[[q
1/N ]]

dq

q
.

The Kodaira-Spencer isomorphism (3) gives an identification

KS(ω2
can) =

dq

q

Given a modular form f ∈ Γ(U, ωk ⊗ Ω1
X(logC)) with U ⊂ X we can then define its q-expansion

as

ι∗f = f(q1/N )ωk
can ⊗ dq

q
, f(q1/N ) =

∞∑
n=0

an(f)q
n
N .

The pullback of the relative de Rham cohomology at infinity is given by

Γ(Spf(Zp[[q
1/N ]]), ι∗H) = Zp[[q

1/N ]])ωcan ⊕ Zp[[q
1/N ]])ηcan

where

∇(ωcan) =: ηcan ⊗ dq

q
∈ ι∗(H⊗ Ω1

X), ∇(ηcan) = 0.

In general, we will have

Γ(Spf(Zp[[q
1/N ]]), ι∗Hk) =

⊕
a+b=k

Zp[[q
1/N ]])ωa

canη
b
can

By the acyclicity of Spf(Zp[[q
1/N ]]), we obtain

H1
dR(Spf(Zp[[q

1/N ]]), ι∗Hk) = Γ(Spf(Zp[[q
1/N ]]), ι∗(Hk ⊗X Ω1

X))/∇(Γ(Spf(Zp[[q
1/N ]]), ι∗(Hk))).

Using the exact sequence in Lemma 1 we then obtain

H1
dR(Spf(Zp[[q

1/N ]]), ι∗Hk) ∼= Γ(Spf(Zp[[q
1/N ]]), ι∗ωk+2/θk+1(Γ(Spf(Zp[[q

1/N ]]), ι∗ω−k)))

∼= Zp[[q
1/N ]]/θk+1(Zp[[q

1/N ]]).

Combining the constructions, we can then form a q-expansion map on the cohomology classes

Lemma 3. The morphism ι : Spf(Zp[[q
1/N ]]) → X between formal schemes induces the following

morphism

Λ → Zp[[q
1/N ]]/θk+1(Zp[[q

1/N ]])

[f ] 7→ [f(q)].

Proof. By an integral comparison with the de Rham cohomology [Kat89] (Theorem 6.4) we can
compute the crystalline cohomology by

H1
log−crys((X,S)/Zp,Hk) ∼= H1

dR((X, S),Hk).

The desired map is then induced by the functoriality along the morphism ι

H1
dR((X, S),Hk) → H1

dR(Zp[[q
1/N ]]), ι∗Hk).

By the previous remark, we have

H1
dR(Zp[[q

1/N ]]), ι∗Hk) ∼= Zp[[q
1/N ]]/θk+1(Zp[[q

1/N ]]).

□

Corollary 1. Let X be an elliptic modular curve of level N defined over Zp, with N > 3, p > 3
and (N, p) = 1. Fix a Zp-point α on the modular curve. Let k be a positive integer with p > k+1,
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let P (X), Q(X) ∈ Qp[X] be respectively the characteristic polynomials of the Frobenius action on

SymkH1
dR(α

∗E)[1], with E → X the universal elliptic curve, and on H1
dR(X

rig,Hrig
k )

P (X) = det(Frob−X|Symk(α∗H)[1]) =

k+1∑
i=0

ciX
i,

Q(X) = det(Frob−X|H1
dR(X

rig,Hk)) =

d∑
i=0

diX
i,

P (X)Q(X) =

d+k+1∑
i=0

eiX
i

with d = dimQp
H1

dR(X
rig,Hk) = dimQp

Mk+2 + dimQp
Sk+2. Let M = d + k + 1, then for every

f ∈ Λ we have
M∑
i=0

eM−ip
M−ianpl+i(f) ≡ 0 mod pl(k+1).

If we assume that P (X), Q(X) are coprime, then there exist f1, . . . , fk+1 ∈ M
mero,{α}
k+2 such that

[fi] ∈ Λ for i = 1, . . . , k + 1 and

k+1∑
i=0

ck+1−ip
k+1−ianpl+i(f) ≡ 0 mod pl(k+1)

for every f ∈ ⟨f1, . . . , fk+1⟩Zp
.

Proof. By Theorem A we have the following relation for every f ∈ Λ

M∑
i=0

eM−ip
M−iU i

p(f) ∈ θk+1
(
M

†,{α}
−k,λ

)
.

The action of Up, which is the trace of the Frobenius lift V on the q-expansion of weight k + 2
modular forms, is classically given by

f(q1/N ) =
∑
n≥0

an(f)q
n/N 7→ (Upf)(q

1/N ) =
∑
n≥0

apn(f)q
n/N .

In particular, using the previous Lemma, we obtain

M∑
i=0

eM−ip
M−iU i

p(f(q
1/N )) ∈ θk+1

(
Zp[[q

1/N ]]
)

from which we deduce for l > 1

M∑
i=0

eM−ip
M−ianpl+i(f) ≡ 0 mod pl(k+1).

□

5.2. An explicit example - Zhang’s congruences. In [Zha25], Zhang provided numerous nu-
merical observation about meromorphic modular forms and their relation with the Frobenius eigen-
values of the poles. In this short section we want to show how the previous constructions and results
provide a framework to understand his congruences.

We will work directly with the coarse moduli space X(1) ∼= P1
j . The descent of the results from

level N to level 1 can be carried over by classical techniques. We consider Example 4.6 of loc. cit..
Fix k = 2 and p > k + 1 = 3, C/Q is the elliptic curve given by the equation

y2 + xy = x3 − x2 − 2x− 1.

We have C is a CM elliptic curve with respect to the order Z[ 1+
√
−7

2 ] of discriminant -7 and
j(C) = −3375. Consider S = {j(C)} ∪ SSp where SSp consists in a set of lift of supersingular
points on X(1). The Gysin sequence (8) gives us the following commutative diagram
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0 H1
dR(X

rig,Hrig
2 ) M

†,SSp

4,λ /θ3(M
†,SSp

−2,λ )
⊕

α∈SSp,Qp
Sym2H1

dR(Eα)[1] 0

0 H1
dR(X

rig,Hrig
2 ) M†,S

4,λ /θ
3(M†,S

−k,λ)
⊕

α∈SSp,Qp
Sym2H1

dR(Eα)⊕ Sym2H1
dR(C)[1] 0

0 H1
dR(X

rig,Hrig
2 ) M

†,{j(C)}
4,λ /θ3(M

†,{j(C)}
−2,λ ) Sym2H1

dR(C)[1] 0

=

=

The radius λ can be chosen accordingly to Lemma 2 to have an explicit lift of Frobenius corre-
sponding with the quotient of the canonical subgroup. The bottom row can be identified with the
equivalent Gysin exact sequence in de Rham cohomology, in particular we have the isomorphism

M
mero,{j(C)}
4 /θ3

(
M

mero,{j(C)}
−2,λ

)
∼= M

†,{j(C)}
4,λ /θ3

(
M

†,{j(C)}
−2,λ

)
.

The three dimensional space given by Sym2H1
dR(C) can be represented in the cohomology group

by meromorphic modular forms with poles along j(C) = −3375. Zhang identifies the following
basis

f1 =
E4

j + 3375
,

f2 = 19 · E4

j + 3375
− 91125 · E4

(j + 3375)2
,

f3 = 1399 · E4

j + 3375
− 19008675 · E4

(j + 3375)2
+ 54251268750 · E4

(j + 3375)3
.

Zhang observed that for every ordinary prime p > 3, for every l > 0, we have

anpl+1(f1) ≡ up(C)2anpl(f1) mod p3l,

anpl+1(f2) ≡ panpl(f2) mod p3l,

anpl+1(f3) ≡ p2up(C)−2anpl(f3) mod p3l

where up(C) is the p-adic root of the polynomial X2 − ap(C)X + p. According to Corollary 1,

the meromorphic modular forms f1, f2, f3 are the representatives of the classes in H1
dR(Vλ,Hrig

k )

corresponding to the Frobenius eigenspace isomorphic to Sym2H1
dR(C).
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[Kat73a] N. Katz. Travaux de Dwork. In Séminaire Bourbaki : vol. 1971/72, exposés 400-417, number 14 in
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